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1 Introduction

Much of machine learning theory is devoted to the study of learning problems where the value to be
predicted consists of a single number – in {−1, 1} for the case of binary classification, and in R in
the case of regression. However, many machine learning problems exist for which the output is more
complicated. Consider, for example, the natural language processing task of part-of-speech tagging,
wherein each of the words in a sentence is assigned a label from a vocabulary of part-of-speech tags:

I proved an interesting theorem today .
PRP VBD DT JJ NN NN .

There are two things to note about this task: the output space is vector-valued, and the outputs at
different indices of this vector are not independent (for example, in English, you are not likely to see
an adjective followed by an adverb).

Tasks with these two properties are often referred to as structured prediction. These sorts of learning
problems are frequently found in the subfields of natural language processing (in tasks such as
part-of-speech tagging, named entity recognition, and machine translation) and computer vision (in
tasks such as image segmentation and object recognition).

The nature of the label space for these learning tasks prohibit us from applying approaches for simpler
tasks such as binary classification without some modifications; additionally, some additional work
is required to develop generalization theory for this task. This report will cover a general modeling
framework for structured prediction, including a few examples of models developed for the task,
before introducing recent results that derive data-dependent generalization bounds for structured
prediction.

2 Modeling structured prediction

We will now provide a formal specification of this task. Inputs are provided from some input set X ,
and outputs fall within an output set Y = ∪lk=1

∏k
i=1 Y ′, where Y ′ is some set describing the labels

that can be assigned to each part of the output and l is some maximum output size. Note that, because
inputs may have varying sizes (e.g. English sentences tend to have different lengths), the output space
consists of structures of varying size (hence the union in the definition). It is common for Y ′ to be
discrete and finite, and the analysis presented later makes this assumption. In our earlier example,
Y ′ consisted of the vocabulary of part-of-speech tags, while Y consisted of all part-of-speech tag
sequences. Hypotheses take the form of scoring functions h : X × Y → R which take an element
of the input space and an element of the output space and assign them a real-valued score. Every
scoring function has a corresponding predictor function h : X → Y , where, for every x ∈ X ,
h(x) = argmaxy∈Yh(x, y).

As already mentioned, we expect the values at given indices to be correlated in some way, with the
exact structure of this depending on the individual task being studied. Hence, it is important that
the scoring functions we use allow us to include this knowledge so that we can better exploit it. To
that end, we will represent the knowledge we have about the output structures using the language
of probabilistic graphical models. Specifically, we assume that the scoring functions decompose



Figure 1: A sample factor graph. The scoring function encoded by this graph is h(x, y) =
h1(x, y1, y2, y3) + h2(y2, y4).

into a sum of various components as defined by a factor graph G = (V, F,E) where V is a set of k
variable nodes (each representing a different component of the output), F is a set of factor nodes, and
E is a set of undirected edges connecting variable and factor nodes. For each factor f ∈ F there is
a corresponding piece of the scoring function hf which takes as arguments the input x as well as
labels yf for some subset of the output variables Yf =

∏|N (f)|
i=1 Y ′, whereN (f) represents the set of

variable nodes connected to factor f . Hence, we can represent the scoring functions as follows:

h(x, y) =
∑
f∈F

hf (x, yf )

It is common for the inputs to have varying size (for example, sentences contain different numbers of
words); we represent this by specifying a function G(xi, yi) that returns the appropriate factor graph
for a given input. Note that, though we are borrowing elements of probabilistic graphical models to
define this model, we do not require the scoring functions to be probabilistic - that is, there need not
be a probabilistic interpretation of the scores output by the scoring functions, and we don’t require
them to enforce any independence assumptions present within the graphs.

The learning scenario is the usual statistical learning setup: we are provided with a sample of points
S = ((x1, y1), . . . , (xm, ym)) drawn I.I.D. from some unknown distribution D. The goal of learning
is to minimize the generalization error R(h) = E(x,y)∼D [L(h(x), y)] where L : Y × Y → R+ is a
loss function that measures how different two outputs are from each other. We require the loss to
be definite; that is, L(y, y′) = 0 if and only if y = y′. One example of a commonly used loss in
structured prediction is Hamming loss, defined as L(y, y′) = 1

k

∑k
i=1 1{yi 6=y′i}.

A variety of models for structured prediction have been developed over the years. Not all of them
fit neatly into this framework, but there are many that do. Here are a few examples of structured
prediction models which can be seen as examples of this general framework:

• Conditional Random Fields [Lafferty et al.] were developed to be a discriminative version
of earlier generative models (such as hidden Markov models) used for some structured
prediction tasks. CRFs model the conditional probability of an output given an input via the
following formulation:

p(yi|xi) ∝
∏
f∈Fi

exp
(
wTf Ψf (x, yf )

)
where wf are parameter vectors and Ψf are “feature functions” which capture various
properties of the input and provided label (e.g., for the earlier example, there could be
binary indicator features for every word-label pair). Fitting this into our framework, scoring
functions have a probabilistic interpretation - specifically, they represent the logarithm of a
conditional distribution over labels given inputs, i.e. log p(y|x) ∝ h(x, y). The individual
components of the scoring functions are linear, meaning they have the form

hf (x, yf ) = wTf Ψf (x, yf )
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The model parameters are learned by maximizing the log-likelihood of the data:

`(w) =

m∑
i=1

∑
f∈Fi

wTf hf (x, yf )− log(Z)

where Z is the partition function that ensures the resulting scoring functions are distributions.
• Maximum Margin Markov Networks (M3N) [Taskar et al., 2003] have the same model

formulation as conditional random fields - they also model the conditional probability of an
output given an input using log-linear factors, and hence the scoring functions represent the
log-probabilities of the output given the input. However, the training objective for M3Ns
is different - rather than maximizing the likelihood of the data, the parameters are learned
using the following objective:

minimize
1

2
‖w‖2 + C

m∑
i=1

ξi

s.t. ∀i,∀y ∈ Y\yi : wT [Ψ(xi, yi)−Ψ(xi, y)] ≥ L(yi, y)− ξi
This objective can be viewed as maximizing a loss-dependent margin between the score
assigned to the correct label and the scores assigned to all other output labels.

• Structured Support Vector Machines (SSVM) [Tsochantaridis et al., 2005] are similar to the
previous two models in that the scoring functions are also linear. However, SSVMs com-
pletely drop the probabilistic interpretation of the scores - this model is only concerned with
finding the highest scoring output, rather than trying to model the conditional distribution of
the outputs. Training is also achieved by attempting to maximize some notion of a margin.
Two optimization objectives are presented in the paper as options for training: the first has
the same form as that for M3Ns, and the second is the following:

minimize
1

2
‖w‖2 + C

m∑
i=1

ξi

s.t. ∀i,∀y ∈ Y\yi : wT [Ψ(xi, yi)−Ψ(xi, y)] ≥ 1− ξi
L(yi, y)

The first formulation can be described as scaling the margin by the loss, and the second can
be described as scaling the slack by the loss.

Though many approaches to structured prediction have been developed over the years, until recently
there has been very little analysis of generalization performance of these approaches. In the few
cases where it did exist ([Taskar et al., 2003, McAllester., 2007]), specific losses or hypothesis sets
were assumed. Late last year, however, [Cortes et al., 2016] developed general bounds for structured
prediction using the general framework we have described here; the next section will cover some of
the analysis presented in this paper.

3 Factor graph Rademacher complexity: definition and risk bound1

The generalization bound to be presented is defined in terms of the following quantity, which is called
the empirical factor graph Rademacher complexity:

R̂G
S ,

1

m
Eε

sup
h∈H

m∑
i=1

∑
f∈Fi

max
y∈Yf

√
|Fi|εi,fhf (xi, y)


where S = ((x1, y1), . . . , (xm, ym)) is a sample of points, G is the function that returns a factor
graph for a given instance, and εi,f are Rademacher random variables. This complexity term allows

1The proofs presented in this section are based heavily on those in [Cortes et al., 2016]. Specifically, the
generalization bound is based on the proof of Theorem 1 where a (slightly modified) version of Lemma 6 was
used in place of Lemma 5.
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us to base the generalization bounds for a given problem on the assumed structure that we have
encoded into the form of the graph. We will now go through the proof of a generalization bound
for structured prediction using this new complexity term. The bound is in terms of the following
margin-based losses:

R̂addS,ρ (h) , E
(x,y)∼S

[
Φ∗
(

max
y′ 6=y

L(y′, y)− 1

ρ
[h(x, y)− h(x, y′)]

)]
Raddρ (h) , E

(x,y)∼D

[
Φ∗
(

max
y′ 6=y

L(y′, y)− 1

ρ
[h(x, y)− h(x, y′)]

)]

where Φ∗(r) = min(M,max(0, r)) and M = maxy,y′ L(y, y′). Upper bounds to these losses can
be found that correspond to the example models described earlier. To be able to complete the proof
of the bound, we will need the following two lemmas. The first provides a simple way for us to upper
bound the risk using surrogate losses.
Lemma 3.1. For any u ∈ R+, let Φu : R → R be an upper bound on v → u1v≤0. Then, the
following upper bound holds for any h ∈ H and (x, y) ∈ X × Y ,

L(h(x), y) ≤ max
y′ 6=y

ΦL(y′,y)(h(x, y)− h(x, y′))

Proof. See [Cortes et al., 2016] for details.

The second lemma can be thought of as a new contraction lemma appropriate for our formulation of
structured prediction. This will allow us to deal with the loss term within our generalization bound:
Lemma 3.2. LetH be a hypothesis set of functions mapping X × Y to R as defined previously. Let
Ψi, i = 1, . . . ,m be functions mapping R× Y toR. Assume that for all i = 1, . . . ,m there exists a
constant µi such that the following is true for any h, h′ ∈ H:

∣∣∣∣max
y∈Y

Ψi(h(xi, y), y)−max
y∈Y

Ψi(h
′(xi, y), y)

∣∣∣∣ ≤ µi
√√√√∑
f∈Fi

[
max
y∈Yf

|hf (xi, y)− h′f (xi, y)|
]2

Then, for any sample S of m points x1, . . . , xm ∈ X , the following inequality holds:

1

m
E
σ

[
sup
h∈H

m∑
i=1

σi max
y∈Y

Ψi(h(xi, y), y)

]
≤
√

2

m
E
ε

sup
h∈H

m∑
i=1

∑
f∈Fi

max
y∈Yf

εifµihf (xi, y)


where ε = (εif )i,f and εif s are independent Rademacher random variables.

Proof. Fix a sample S = (x1, . . . , xm). The proof proceeds by processing one σi at a time and then
recursing. First, we rewrite the left-hand side of equation 3.2 as follows:

1

m
E
σ

[
sup
h∈H

m∑
i=1

σi max
y∈Y

Ψi(h(xi, y), y)

]
=

1

m
E

σ1,...,σm−1

[
E
σm

[
sup
h∈H

Um−1(h) + σm max
y∈Y

Ψm(h(xm, y), y)

]]
,

where Um−1(h) =
∑m−1
i=1 σi maxy∈Y Ψi(h(xi, y), y). For the purposes of this proof, we assume

that the supremum of this expression is attained for both values of σm; in the case that this is not true,
this proof holds by instead considering ε-close hypotheses to these suprema. Letting h1 and h2 be
the maximizing hypotheses for σm = 1 and σm = −1, respectively, the inner expectation can be
expanded as

E
σm

[
sup
h∈H

Um−1(h) + σm max
y∈Y

Ψm(h(xm, y), y)

]
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=
1

2

[
Um−1(h1) + max

y∈Y
Ψm(h1(xm, y), y)

]
+

1

2

[
Um−1(h2)−max

y∈Y
Ψm(h2(xm, y), y)

]
Next, we apply the precondition for Ψm and the Khintchine-Kahane inequality to get

1

2

[
Um−1(h1) + max

y∈Y
Ψm(h1(xm, y), y)

]
+

1

2

[
Um−1(h2)− max

y∈Yf

Ψm(h2(xm, y), y)

]

≤ 1

2

Um−1(h1) + Um−1(h2) + µm

√√√√∑
f∈Fm

[
max
y∈Yf

|h1f (xm, y)− h2f (xm, y)|
]2


≤ 1

2

Um−1(h1) + Um−1(h2) + µm
√

2 E
εm

∣∣∣∣∣∣
∑
f∈Fm

εmf max
y∈Yf

|h1f (xm, y)− h2f (xm, y)|

∣∣∣∣∣∣


where εm = (εmf )f∈Fm
. Let s(εm) ∈ {±1} denote the sign of∑

f∈Fm
εmf maxy∈Yf

|h1f (xm, y)− h2f (xm, y)|. Then, we get the following:

1

2

Um−1(h1) + Um−1(h2) + µm
√

2 E
εm

∣∣∣∣∣∣
∑
f∈Fm

εmf max
y∈Yf

|h1f (xm, y)− h2f (xm, y)|

∣∣∣∣∣∣


≤ 1

2
E
εm

Um−1(h1) + Um−1(h2) + µm
√

2s(εm)
∑
f∈Fm

max
y∈Yf

εmf |h1f (xm, y)− h2f (xm, y)|


=

1

2
E
εm

Um−1(h1) + Um−1(h2) + µm
√

2s(εm)
∑
f∈Fm

max
y∈Yf

εmf (h1f (xm, y)− h2f (xm, y))


≤ 1

2
E
εm

Um−1(h1) +
∑
f∈Fm

max
y∈Yf

εmfh1f (xm, y)

+Um−1(h2) + µm
√

2s(εm)
∑
f∈Fm

max
y∈Yf

−εmfh2f (xm, y)


≤ 1

2
E
εm

sup
h∈H

Um−1(h) + µm
√

2s(εm)
∑
f∈Fm

max
y∈Yf

εmfhf (xm, y)


+ sup
h∈H

Um−1(h) + µm
√

2s(εm)
∑
f∈Fm

max
y∈Yf

−εmfhf (xm, y)


≤ 1

2
E
εm

 E
σm

sup
h∈H

Um−1(h) + µm
√

2
∑
f∈Fm

max
y∈Yf

s(εm)σmεmfhf (xm, y)


=

1

2
E
εm

sup
h∈H

Um−1(h) + µm
√

2

c∑
f∈Fm

max
y∈Yf

εmfhf (xm, y)


Continuing the same way for every other σi, i < m, completes the proof.

We now have all of the tools we need to prove a generalization bound:
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Theorem 3.3. Fix ρ > 0. For any δ > 0, with probability at least 1− δ over the draw of a sample S
of size m, the following holds for all h ∈ H:

R(h) ≤ Raddρ (h) ≤ R̂addS,ρ (h) +
4
√

2

ρ
R̂G
S (H) + 3M

√
log 1

δ

2m

Proof. The first step is to upper bound the risk by the margin risk. Using Lemma 3.1 with Φu(v) =
Φ∗(u− v

ρ ) along with the monotonicity of Φ∗, we get the following:

R(h) ≤ E
(x,y)∼D

[
max
y′ 6=y

ΦL(y′,y)(h(x, y)− h(x, y′))

]
≤ E

(x,y)∼D

[
Φ∗
(

max
y′ 6=y

(
L(y′, y)− 1

ρ [h(x, y)− h(x, y′)]
))]

= Raddρ (h)

For notational convenience, define:

H0 =

{
(x, y) 7→ Φ∗

(
max
y′ 6=y

(
L(y′, y)− 1

ρ [h(x, y)− h(x, y′)]
))

: h ∈ H
}

H1 =

{
(x, y) 7→ max

y′ 6=y

(
L(y′, y)− 1

ρ [h(x, y)− h(x, y′)]
)

: h ∈ H
}

At this point, we apply a standard Rademacher complexity bound [Koltchinskii and Panchenko, 2002]
to tell us that, for any δ > 0, with probability at least 1− δ, the following holds for all h ∈ H:

Raddρ (h) ≤ R̂addS,ρ (h) + 2R̂S(H0) + 3M

√
log 1

δ

2m

where R̂S(H0) is the standard empirical Rademacher complexity of the set of functionsH0, i.e.

R̂S(H0) =
1

m
E
σ

[
sup
h∈H

m∑
i=1

σiΦ
∗
(

max
y′ 6=yi

(
L(y′, yi)− 1

ρ [h(xi, yi)− h(xi, y
′)]
))]

with σ = (σ1, . . . , σm) and σis are Rademacher random variables. The fact that Φ∗ is 1-Lipschitz
allows us to apply Talagrand’s contraction lemma [Ledoux and Talagrand, 1991, Mohri et al., 2012]
to achieve the result R̂S(H0) ≤ R̂S(H1). The sub-additivity of the supremum along with the fact
that σi and −σi are distributed identically allows us to split the Rademacher complexity into two
terms:

R̂S(H1) ≤ 1

m
E
σ

[
sup
h∈H

m∑
i=1

σi max
y′ 6=yi

(
L(y′, yi) + 1

ρh(xi, y
′)
)]

+
1

m
E
σ

[
sup
h∈H

m∑
i=1

σi
1
ρh(xi, yi)

]

≤ 1

m
E
σ

[
sup
h∈H

m∑
i=1

σi max
y′∈Y

(
L(y′, yi) + 1

ρh(xi, y
′)
)]

+
1

m
E
σ

[
sup
h∈H

m∑
i=1

σi max
y∈Y

1
ρh(xi, y)

]
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We bound each of these separately using Lemma 3.2. To do so, we need to prove the precondition
of this Lemma for each term; for the first term, let Ψi(h(xi, y), y) = L(y, yi) + 1

ρh(xi, y). We then
have the following for any h, h′ ∈ H:

∣∣∣∣max
y∈Y

(
L(y, yi) + 1

ρh(xi, y)
)
− max

y∈Y

(
L(y, yi) + 1

ρh
′(xi, y)

)∣∣∣∣
≤ 1

ρ max
y∈Y
|h(xi, y)− h′(xi, y)|

≤ 1
ρ

∑
f∈Fi

max
y∈Yf

|hf (xi, y)− h′(xi, y)|

≤
√
|Fi|
ρ

√√√√∑
f∈Fi

[
max
y∈Yf

|hf (xi, y)− h′f (xi, y)

]2

where the last line is a consequence of the following inequality, which holds for any vector a ∈ Rd:

1

n

d∑
i=1

ai ≤

(
1

n

d∑
i=1

a2
i

)1/2

We can prove the precondition of the Lemma for the other term in a similar manner: for any h, h′ ∈ H:

∣∣∣∣max
y∈Y

1
ρh(xi, y) − max

y∈Y
1
ρh
′(xi, y)

∣∣∣∣
≤ 1

ρ max
y∈Y
|h(xi, y)− h′(xi, y)|

≤ 1
ρ

∑
f∈Fi

max
y∈Yf

|hf (xi, y)− h′(xi, y)|

≤
√
|Fi|
ρ

√√√√∑
f∈Fi

[
max
y∈Yf

|hf (xi, y)− h′f (xi, y)

]2

Hence, for both terms, we can apply Lemma 3.2 with µi =

√
|Fi|
ρ , giving us

R̂S(H1) ≤ 1

m
E
σ

[
sup
h∈H

m∑
i=1

σi max
y′∈Y

(
L(y′, yi) + 1

ρh(xi, y
′)
)]

+
1

m
E
σ

[
sup
h∈H

m∑
i=1

σi max
y∈Y

1
ρh(xi, y)

]

≤ 2
√

2

m
E
ε

sup
h∈H

m∑
i=1

∑
f∈Fi

max
y∈Yf

εi,f

√
|Fi|
ρ

hf (xi, y)


=

2
√

2

ρ
R̂G
S (H)

Substituting this into the bound derived earlier completes the proof.

4 Bounding factor graph Rademacher complexity

To fully instantiate the bound provided in Theorem 3.3, we need to be able to estimate the empirical
factor graph Rademacher complexity for a given hypothesis set. For example, consider the set of
linear functions with bounded L2-norm:

H2 =
{
x 7→ wTΨ(x, y) : w ∈ RN , ‖w‖2 ≤ Λ2

}
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where Ψ(x, y) is a feature function for inputs x and y that decompose according to the factor graph,
i.e. Ψ(x, y) =

∑
f∈F Ψf (x, yf ). This is the hypothesis set underlying the structured prediction

models mentioned earlier if we ensure that the parameters for each factor are “tied”. We can bound
the complexity as follows:

R̂G
S (H2) =

1

m
E
ε

 sup
‖w‖2≤Λ2

wT

 m∑
i=1

∑
f∈Fi

max
y∈Yf

εi,f
√
|Fi|Ψf (xi, y)


≤ Λ2

m

E
ε

∥∥∥∥∥∥
m∑
i=1

∑
f∈Fi

max
y∈Yf

εi,f
√
|Fi|Ψf (xi, y)

∥∥∥∥∥∥
2



≤ Λ2

m

E
ε


∥∥∥∥∥∥
m∑
i=1

∑
f∈Fi

max
y∈Yf

εi,f
√
|Fi|Ψf (xi, y)

∥∥∥∥∥∥
2

2




1
2

=
Λ2

m

 m∑
i=1

∑
f∈Fi

max
y∈Yf

|Fi|‖Ψf (xi, y)‖22

 1
2

≤ Λ2r2

m

√√√√ m∑
i=1

|Fi|2

where r2 = maxi,f,y ‖Ψf (xi, y)‖2. To refine this bound further, we have to decide on a graph
structure. For example, consider a sequence labeling problem where our graph consists of a linear
chain that is the same size as the input sequence. Assuming a max sequence length of l, this bound
becomes

Λ2r2

m

√√√√ m∑
i=1

|Fi|2 ≤
lΛ2r2√
m

As another example, consider a problem where our graph is fully pairwise, with maximum graph size
of l nodes. In this case, the bound is

Λ2r2

m

√√√√ m∑
i=1

|Fi|2 ≤
l2Λ2r2√

m

We can also refine r2 based on the form of Φ we choose for the problem - for example, if we use
boolean features where there is some known sparsity s where s represents the maximum number of
features that are simultaneously active, then r2 is bounded by

√
s.

5 Conclusion

This report presented a broad overview of structured prediction theory, including a general formulation,
example models, and some generalization theory. The bounds proved are general enough to apply
to a wide variety of different models. The issues presented here represent a very small subset of
the problems faced when studying structured prediction; for example, for general factor graphs,
finding argmaxy∈Yh(x, y) is an NP-hard problem, and therefore approximate inference is required
for learning to be tractable.
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